A low-dispersion and low-dissipation implicit Runge-Kutta scheme

نویسندگان

  • Alireza Najafi-Yazdi
  • Luc Mongeau
چکیده

A fourth-order, implicit, low-dispersion, and low-dissipation Runge-Kutta scheme is introduced. The scheme is optimized for minimal dissipation and dispersion errors. High order accuracy is achieved with fewer stages than standard explicit Runge-Kutta schemes. The scheme is designed to be As table for highly stiff problems. Possible applications include wall-bounded flows with solid boundaries in the computational domain, and sound generation by reacting flows.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An overview of high-order finite difference schemes for computational aeroacoustics

One of the problems in computational aeroacoustics (CAA) is the large disparity between the length and time scales of the flow field, which may be the source of aerodynamically generated noise, and the ones of the resulting acoustic field. This is the main reason why numerical schemes, used to calculate the timeand space-derivatives, should exhibit a low dispersion and dissipation error. This p...

متن کامل

Optimized Low Dispersion and Low Dissipation Runge- Kutta Algorithms in Computational Aeroacoustics

A new explicit fourth-order six-stage Runge-Kutta scheme with low dispersion and low dissipation properties is developed. This new Runge-Kutta scheme is shown to be more efficient in terms of dispersion and dissipation properties than existing algorithms such as Runge-Kutta temporal schemes developed by Hu et al. (1996), Mead and Renaut (1999), Tselios and Simos (2005). We perform a spectral an...

متن کامل

Low-dissipation and low-dispersion fourth-order Runge–Kutta algorithm

An optimized explicit low-storage fourth-order Runge–Kutta algorithm is proposed in the present work for time integration. Dispersion and dissipation of the scheme are minimized in the Fourier space over a large range of frequencies for linear operators while enforcing a wide stability range. The scheme remains of order four with nonlinear operators thanks to the low-storage algorithm. Linear a...

متن کامل

Zero Dispersion and Zero Dissipation Implicit Runge-Kutta Methods for the Numerical Solution of Oscillating IVPs

In this paper we present two new methods based on an implicit Runge-Kutta method Gauss which is of algebraic order fourth and has two stages: the first one has zero dispersion and the second one has zero dispersion and zero dissipation. The efficiency of these methods is measured while integrating the radial Schrödinger equation and other well known initial value problems.

متن کامل

Nonuniform time-step Runge-Kutta discontinuous Galerkin method for Computational Aeroacoustics

In computational aeroacoustics (CAA) simulations, discontinuous Galerkin space discretization (DG) in conjunction with Runge-Kutta time integration (RK), which is so called Runge-Kutta discontinuous Galerkin method (RKDG), has been an attractive alternative to the finite difference based high-order numerical approaches. However, when it comes to complex physical problems, especially the ones in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of computational physics

دوره 233  شماره 

صفحات  -

تاریخ انتشار 2013